Site Meter

Saturday, December 12, 2009

Send Alzheimer's Packing


"Going forward, looking at the way we age may actually have more impact on the treatment and prevention of Alzheimer's disease than studying the basic biology of the disease itself." -- Andrew Dillin.....


Newspaper stories about this recently released research study -- Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice -- are coming into my alert system one after another. The actual article headline on the journal Cell is -- Send Alzheimer's Packing.

You can read the complete version of the release below and get all the details. I see no reason to rewrite this and water it down so I can put my byline on it.

-----------------------------

I write often on this blog about possible ways to ward off Alzheimer's in articles like Worried about Alzheimer's (the series).
Age is the major risk factor for the development of Alzheimer's disease. Beyond age 65, the number of people with the disease doubles every five years.

Take the case of my mother Dorothy who sufferes from Alzheimer's disease. At the age of 85 she was living on her own, paying her own bills, driving to Bingo a couple of nights a week, grocery shopping, you name it. At 85, she walked 15 blocks with me, each way, to eat breakfast in New York city.

Then she started scrapping her feet on the ground. Started to talk incessantly about money. Started complaining. Stopped going to the pool. Developed a very negative attitude.

Before we could get a grip on things she couldn't walk a block. Fell and broke her finger.

Finally the verdict came in -- dementia, probably Alzheimer's.

Many of you know our story. I took her into the gym (for the first time at age of 87), and she stopped falling. We got her on thyroid medication and she smiled for the first time in years. I write about the benefits of exercise, nutrition, socialization, and positive caregiving often. I believe in the combination of Aricept and Namenda as soon as someone is diagnosed with dementia.

The research discussed below falls into my favorite category -- Bunkhouse Logic. The cowboys keep it simple -- real simple.

Is this the definitive answer to stop Alzheimer's of course not. However, the research does

shed light on the question of whether Alzheimer's disease late in life is a disastrous consequence of the aging process itself or whether the beta amyloid aggregates that cause the disease simply take a long time to form.
These research findings are at an early stage and they should prove to be very controversial. The research findings call into question the widely accepted amyloid-beta plaques theory as the cause of Alzheimer's disease.

Follow the Alzheimer's Reading Room on Twitter

Delaying the aging process protects against Alzheimer's disease

Aging is the single greatest risk factor for Alzheimer's disease. In their latest study, researchers at the Salk Institute for Biological Studies found that simply slowing the aging process in mice prone to develop Alzheimer's disease prevented their brains from turning into a neuronal wasteland.

"Our study opens up a whole new avenue of looking at the disease," says the study's leader, Howard Hughes Medical Investigator Andrew Dillin, Ph.D., an Associate Professor in the Salk Molecular and Cell Biology Laboratory. "Going forward, looking at the way we age may actually have more impact on the treatment and prevention of Alzheimer's disease than studying the basic biology of the disease itself."

Their finding, published in the Dec. 11, 2009 issue of the journal Cell, is the latest clue in the Salk scientists' ongoing quest to shed light on the question of whether Alzheimer's disease onset late in life is a disastrous consequence of the aging process itself or whether the beta amyloid aggregates that cause the disease simply take a long time to form.

Age is the major risk factor for the development of Alzheimer's disease. Beyond age 65, the number of people with the disease doubles every five years. Centenarians, however, seem to escape most common age-related diseases, including the ravages of Alzheimer's disease.

"In this study, we went directly to the root cause of Alzheimer's disease and asked whether we could influence the onset of the disease by modulating the aging process," says first author Ehud Cohen, Ph.D., formerly a postdoctoral researcher in Dillin's lab and now an assistant professor at the Hebrew University-Hadassah Medical School in Jerusalem, Israel.

To answer this intriguing question, he slowed the aging process in a mouse model for Alzheimer's by lowering the activity of the IGF-1 signaling pathway. "This highly conserved pathway plays a crucial role in the regulation of lifespan and youthfulness across many species, including worms, flies, and mice and is linked to extreme longevity in humans," he explains. As a result, mice with reduced IGF-1 signaling live up to 35 percent longer than normal mice.

Cohen then employed a battery of behavioral tests to find out whether it was simply the passage of time or aging per se that determined the onset of the disease. Chronologically old but biologically young animals appeared nearly normal long after age-matched, normal-aging Alzheimer's mice exhibited severe impairments in their ability to find a submerged platform in the Morris water maze (see accompanying videos) or stay atop a revolving Rota Rod.

"These behavioral differences between normal and long-lived mice were apparent at nine months of age, but the big surprise came when we took a closer look at the plaques in their brains," says Cohen.

One of the telltale signs of Alzheimer's disease is the buildup of toxic clumps of beta amyloid plaques in the brain. Beta amyloid production probably occurs in all brains, but healthy cells clear away excess amounts. Brains of people with Alzheimer's disease, on the other hand, are unable to control beta amyloid accumulation. The same is true for Alzheimer's mouse models, which are genetically engineered to overproduce beta amyloid.


Although long-lived mice didn't show any of the cognitive or behavioral impairments typical of Alzheimer's disease till very late in life, their brains were riddled with highly compacted plaques.

"Although before it was thought that plaques are the causative agents of Alzheimer's disease, our results clearly support the emerging theme that they have a protective function," says Cohen. "As mice age, they become less efficient at stowing away toxic beta amyloid fibrils in tightly packed aggregates."

An earlier study by Cohen, Dillin, and colleagues, in which they had used roundworms to study the effects of the aging process on protein aggregation, had indicated that high molecular weight aggregates of beta amyloid might actually be less toxic than smaller beta amyloid fibrils. "But worms don't have brains as we do, and it wasn't clear whether these results would be relevant for mammals," he says.

And what about those lucid centenarians? "Interestingly, three studies found that some very long-lived humans carry mutations in components of the IGF-1 signal pathway—the same pathway that we perturbed to increase the lifespan of the mice in our study," says Dillin.

"The reporting of this work is a celebration for the entire field of aging researchers, as it validates the long-held hypothesis that genetic and pharmacologic changes to create a healthy lifespan, or 'healthspan,' can greatly reduce the onset of some of the most devastating diseases that afflict mankind," he adds.

The work was funded in part by the National Institutes of Health and the McKnight Endowment for Neuroscience.

Researchers who also contributed to the work include Johan F. Paulsson, Deguo Du and Jeffery W. Kelly at the Skaggs Institute of Chemical Biology, The Scripps Research Institute, Pablo Blinder in the Department of Physics at the University of California, San Diego, Tal Burstyn-Cohen in the Molecular Neurobiology Laboratory at the Salk Institute, Anthony Adame, Hang M. Pham and Eliezer Masliah in the Department of Neurosciences at University of California, San Diego, and Gabriela Estepa in the Molecular and Cell Biology Laboratory at the Salk Institute.

Here is the link to the complete scientific study as published in the journal CellReduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice

You can find a very good short video here.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes, and cardiovascular disorders by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.


Popular articles on the Alzheimer's Reading Room



Bob DeMarco is the editor of the Alzheimer's Reading Room and an Alzheimer's caregiver. The Alzheimer's Reading Room is the number one website on the Internet for news, advice, and insight into Alzheimer's disease. Bob has written more than 950 articles with more than 8,000 links on the Internet. Bob resides in Delray Beach, FL.

Original content Bob DeMarco, Alzheimer's Reading Room



The Alzheimer's Action Plan: The Experts' Guide to the Best Diagnosis and Treatment for Memory Problems