Jun 30, 2016

Salk Researchers Find Marijuana Compounds Remove Alzheimer's Plaque from Brain

Salk Institute scientists have found preliminary evidence that tetrahydrocannabinol (THC) and other compounds found in marijuana can promote the cellular removal of amyloid beta, a toxic protein associated with Alzheimer’s disease.


Marijuana might protect the brain against Alzheimer's disease.

“Although other studies have offered evidence that cannabinoids might be neuroprotective against the symptoms of Alzheimer’s, we believe our study is the first to demonstrate that cannabinoids affect both inflammation and amyloid beta accumulation in nerve cells.”



Subscribe to the Alzheimer's Reading Room
Email:

Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells
Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons

While these exploratory studies were conducted in neurons grown in the laboratory, they may offer insight into the role of inflammation in Alzheimer’s disease and could provide clues to developing novel therapeutics for the disorder.
“Although other studies have offered evidence that cannabinoids might be neuroprotective against the symptoms of Alzheimer’s, we believe our study is the first to demonstrate that cannabinoids affect both inflammation and amyloid beta accumulation in nerve cells,” says Salk Professor David Schubert, the senior author of the paper.
Alzheimer’s disease is a progressive brain disorder that leads to memory loss and can seriously impair a person’s ability to carry out daily tasks.


Amyloid beta is a major component of the plaque deposits that are a hallmark of the disease. But the precise role of amyloid beta and the plaques it forms in the disease process remains unclear.


In a manuscript published in June 2016’s Aging and Mechanisms of Disease, the Salk team studied nerve cells altered to produce high levels of amyloid beta to mimic aspects of Alzheimer’s disease.
  • The researchers found that high levels of amyloid beta were associated with cellular inflammation and higher rates of neuron death. 
  • They demonstrated that exposing the cells to THC reduced amyloid beta protein levels and eliminated the inflammatory response from the nerve cells caused by the protein, thereby allowing the nerve cells to survive.
“Inflammation within the brain is a major component of the damage associated with Alzheimer’s disease, but it has always been assumed that this response was coming from immune-like cells in the brain, not the nerve cells themselves.”  
“When we were able to identify the molecular basis of the inflammatory response to amyloid beta, it became clear that THC-like compounds that the nerve cells make themselves may be involved in protecting the cells from dying.”
  • Brain cells have switches known as receptors that can be activated by endocannabinoids, a class of lipid molecules made by the body that are used for intercellular signaling in the brain. 
  • The psychoactive effects of marijuana are caused by THC, a molecule similar in activity to endocannabinoids that can activate the same receptors. 
  • Physical activity results in the production of endocannabinoids and some studies have shown that exercise may slow the progression of Alzheimer’s disease.
How to Get Answers To Your Questions About Alzheimer's and Dementia

Schubert emphasized that his team’s findings were conducted in exploratory laboratory models, and that the use of THC-like compounds as a therapy would need to be tested in clinical trials.

Related

How to Use Ice Cream as a Memory Care Tool

Test Your Memory for Dementia and Alzheimer's (5 Best Tests)

Alzheimer's 3 Little Words That Work

Alzheimer Care The Power of Purpose in Our Lives


The Alzheimer's Reading Room contains more than 5,000 articles and has been published daily since July, 2009. The ARR is read in over 206 countries.

You are reading original content the Alzheimer's Reading Room

Citation

Real Science

Journal  - Aging and Mechanisms of Disease

Title - Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids

Authors - Antonio Currais, Oswald Quehenberger, Aaron M Armando, Daniel Daugherty, Pam Maher & David Schubert

The study was supported by the National Institutes of Health, The Burns Foundation and The Bundy Foundation.